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Abstract

A tl]rcc-di~]lel~sio~]al  electromagnetic 1’IC code has been developed on the 512 node

lnkl ‘J’ouchstonc  l)elta MIMI) parallel computer. This code uses a standard relativis-

tic leapfrog scheme to push particles and a local finite- diffmmc.e time-domain method

to update the electromagnetic fields. ‘J’hc code is inlplmle]lted  using the Genera]

Concurrent I’IC algorithm which usm a domain decomposition to divide the conlpu-

tation among  the processors. ‘1’hc  31) si]nulation domain can be partitioned into 1-,

2-, or 3-dinlcnsional  subdomains.  }’articles must be mc.hanged bctwcm  processors as

they move among the subdomains. g’he ]ntel l)elta  allows one to usc this code for

very-large-scale simulations (i.e. over 108 pa.rticlcs  and 106 grid cells). ~’he parallel

dliciency  of t}lis code is measured, and the overall code performance on the I)elta is

compared with that on Cray supercornputcrs. It is shown that our code runs with

a high parallel e~]ciency  of > 95% for large size ])roblelns. The particle push time

achieved is 115 nsecs/particle/ti  n]e step for 162 million particles on 512 nodes. Con~-

paring  with the performance on a single C1’U Cray  C90, this represents a factor of

58 speedup. It is also shown that t}lc fi]iitcdiffcrc]]ce  method for field solve is signif-

icantly more efflc.icnt than transform methods o]l parallel co~nputers. q’he field solve

time is < 0.7% of total  time for problems with 77 particles/cell, and it is < 3% even

for problems with 7 particles/cell.
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I ]“lltroductioll

Computmr  particle simulation

killctic p,roblcms  in space and

has becoII~e  a standard  research tool for the study of non-linear

laboratory plasma physics research. A })articlc-ill-cell (1’IC) code

simu]atcs  plasma. phenomena by modeling a plasma as hundreds of thousands of test  particles

and following the evolution of the orbits  of individual test  particles in the self-consistent elec. tro-

ma.gnetic  flclcl[l,  2]. Nach time step in a PIC code consists of two major stages: the partklc  push

to upclate the particle orbits  and calculated the new charge and/cm current density, and the field

SOIVC to update the electromagnetic fields, Since the particles can be located anywhere within the

simulation domain but  the macroscopic field quantities are defined only on discrete grid points,

the particle push uses two interpolation steps to link the particle orbits  and the field components:

a. “gather” step to interpolate fields from gricl  points  to particle positions and a “scatter” step to

deposit the charge/currcmt  of each particle to grid points.

While the particle  simulation method allows one to study the plasma  phenomena from the very

fundamental level, the scope of the physics that can be resolved in a simulation study critically

depends on the c.omput ational  power. The computational tinle/cost  and computer memory size

rcstric.ts t}le time scale, spatial scale, and number  of particles that can be used in a simulation.

‘l’he cost of running three dimensional elcctrcnnagnetic  I’IC calculations on existing sequential

supcrcomputcrs  limits the problems which can be addressed.

Recent  advances in massively parallel superc.omputers  have provided computational possibili-

ties that were previously not conceivable. For instance, the 512-processor lntel  ‘1’ouc.}lstone  IIclta

operated at Caltcch  by the Concurrent Supcrcomputing  Consortium has 512 x 16 Mbytes  =- 8.19

gigabytes  or 2,048 gigawords of memory and a peak speed of 512 x 80 single-precision Mflops ==

40.96 single-precision gigaflops.  The J}’], T31) from Cray Research, if upgraded to 256 nodes with

8 Mwords per node, would also have 2.048 gigawords and a peak speed of 38 gigaflops.

l’reviously,  one- and tw~dimensiona]  electrostatic and electromagnetic PIC  codes have been

implemented on MIMI)  parallel supercomputers  using the Gmeral Concurrent PIC algorithm

(GCI’lC)  which uscs a domain decomposition to divide the computation among the proccssors[3,

4, 5]. q’his and other decomposition methods have also been studied Ly Walker [6] and Azari

and I,cc[7, 8]. More recently, the GCPIC il~~~)le~llcl~tatioll  of the particle push portion of a threo-

dimensionaj  electrostatic }’IC code has been described and analyzed by l,yster et al[9].  In this
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pa})cv we extend the previous work and dcsrribc  the parallel illll)lc~~~cl~tatio~l  of both tllc })article

and field stages of a tllrcc-{li]~lellsiollal  clcctromagnctic  1’1(; code. ‘1’hc objectives of “this study

are to devcIlop  a t}lree-clil~~clisiol~al  clectrolnag]]ctir  1)1 C code for MIMI) (I[~lllti~Jle-i  I~strllctioll

ll~ultil)]c-data) parallel supcrc.omputcm and tc) test tlIQ full potmltial of using parallc.1  ccnnputcrs

for very-large-scale particle  silnulations.

‘1’llc c.odc wc deve]opcd  uses a stal(dard  relativistic partic]c  pus}l  arid a local  finite-cl  iffercnce

ti]nc-dcnnain solution to the full Maxwell’s equations. ‘1’his code is implemented on the 512-

l)roc.cssor  IIltel  l)elta parallel com])utcr using tlic GCI’IC algorithm. q’hc resulting parallel 31)

II;M I’IC code has proven to be very efflcicnt. 11’or installcc,  for a test simulation using 162 millioll

~)artjcles al)d 2.1 milliol~  grid cells  o]l all 512 processors,  wc have achieved a parallel efficiency

of 95% arid a parallel push time of 115 l~secs/~Jarticlc/tiI~~c  step. WC also find that t}lc finite-

diffemncc field solve js significantly more eflicjellt  than  tra]lsform methods. 11’01 this test, run,

tllc ru]i time is domiliated  by the push tilnc and the field solve time is < 0.7% of the total

tilne.  Wc IIave also run t}le same code on Cray supercomputms  (the code was compiled using the

~!ray system’s automatic vectorization  slid optimization, but no rewriting was clone to the code).

Comparing with the performance on a single processor Cray C90, the run time we achieved on

tile l)elta represe]lts  a factor of 58 spcedup.

‘1’his paper is organized as follows: Section 2 discusses the algorithm used in our 31) I(;M I’IC

code and the parallel il~l})lcl~lel~tatiol~ ;  sectiol~  3 arlaly~es the code Perforlnallcc  thro@~ scaled

size })roblems,  fixed size problems, and a comparisol[  of the performance on the lt~tel  l)elta with

that on Cray supercomputers;  and Scc.tioll  4 contains a sunlmary  and conclusions.

2 A Parallel 31) Electromagnetic P] C Code

2.1 ‘J%e Algorithm

An electromagnetic PIC code attempts to simulate  plasma phenomena using only the fundamental

physics laws, i.e. the Maxwell’s equations for the macroscol)ic field arid Newton’s second law for

individual partic]c  trajectories:

V.z=p (1)

V.]7, (1 (’2)
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(3)

(4)

(5)

where relativistic effects are included in cq(5) (T = 1 /{1 – l~z~cz  ). Eqs(l  ) t}irough  (5) are the

equations to be solved in our 31) elcctroma.gnetic  1’IC code,

in electromagnetic I’IC codes, the field ccluations are often solved by transforln  methods such

as fast l“ourier  transforlns  (F’1’q’).  IIowcvm-, transform methods are ‘(global” methods. in general,

global  ln~thods  are not very eficient for ~)arallel  colnputers  bccausc  they  involve  a large arnOunt

of interproccssor  communication which may eventually become the bottleneck. For a code to run

eflicicnt]y  in parallel, a method that updates tllc field purely from the local data is preferred. In

our code, the electromagnetic field equations al ( solved using a charge-conserving finite-difference

leapfrogging scheme, which was used by Sandia  National I,aboratorics  in the Quicksilver code

[10, 11] and by IIuncman  et al in the ‘i’ristall  code [12, 13]. ‘1’his field solve schc]ne  is described

MOW.

lIYo]n the Maxwell’s equations, onc notes that eq( 1 ) will always be satisfied as long as the

charge consm-vation  condition
ap
--- == -- ~ “J
&

is satisfied. ]Ience,  the electromagnetic field can be updated from only the two cur] Maxwell’s

cquatic)ns  (3) and (4) if onc can enforce rigorous charge conservation numerically. A rigorous

charge conservation method for current deposit is described in detail in [1 2], In this scheme, one

obtains the current flux through every ccl] surface within a time step ch, diJ-’i+ ‘/2, by counting

t hc amount of charge carried across the cell su rfa.ces  by particles as they move from F’ to p~~ 1.

Next, the electromagnetic field is updated locally by finite-difiiiralce  leapfrogging in time:

(7)

where the superscripts n -t 1/2 and ?L + 1 represcn~t, tile time level. ‘1’his scheme requires the use

of a fully staggered grid mesh systeln in which 17 and ~“dt arc defined  at lnidpoints  of cell-edges
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.
while the 11 components are defined at the midpoints of the ce]l-surfaces. q’hc staggered grid

mesh systcm,  known in the computational elcctrc~]llag,llctics  community as the Yec lattice [14], is

showII in F’igure 1. It ensurm  that the change of 11 flux through a cdl surface equals the negative

circulation of }(1 around that surface and the change of 1’; flux through a ccl] surface (offset grid)

equals the circulation of 11 around that surface lninus the current through it.

lJ] the code, the trajectory of each particle  is integrated using a standard time-ccmtcring

leapfrog scheme discussed in [1]. I,et Z = -yl~, and the leapfrog scliemc  for eq(5) is written as

~jl+ 1/2 -7t —l/2 _ @L~’1 +
,@ 1/2 , fi+l-1/2

-u-
q 17”

–--– -----— ---------- x ;; --c-]
‘m 27”

..,~+ ] gl+l/2
x -- i“ = -------- dt@ l/2

(8)

(9)

IJ] cq(8),  1: and l; are interpolated from the grids to the particle positions. See Ref.[1 ] for

discussions on detailed steps for eq(8) and the centering of ~“.

1)

2)

3)

4)

‘1’hc  basic algorithm for our electromagnetic I’l C code is as follows:

Set the initial conditions of the particles and flclds

(’1’hc initial conditions must satisfy the two divergence hlaxwcll

equations (1) and (2));

l’article  Move:

a) interpolate the electromagnetic field on t}le  particle position

to obtain  the force on each particle (gather);

b) Update the particle velocity and position fronl eq(8)  and (9);

Current lkposit (scattir):

Calculate the charge carried by particles across CC1l surfaces within the time step

to obtain the current flux J-dt through each cdl  surface;

l’icdd  Update:

Solve the two curl Maxwell equations

to update the electromagnetic field.

by finite- diflerenc.e leapfrogging eq(6) and (i’)

Steps 2) and 3) together form the particle push stagy of the code,
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Our 31) clcc!romagnetic  I’IC code has been implemented on a Ml Ml) parallel computer, the ]ntel

‘1’ouc,hstonc  l)elta at Caltech.  q’he Intel ‘ITouc?lstonc l)clta system consists of an cnsemb]c of IIodm

which are independent processors with their ow]t memory  connected as a two-dimensional mesh.

‘J’hme  arc 512 numerical nodes. l(;ach node has a peak speed of 80 single-precisiori  Mflops or 60

clo~lblc-~)rec.isiol~  Mflops.  ‘J’he memory  of each node is 16 Mbytes, of w}lich 12 Mbytes arc available

fcw the user’s  code. Hence, the total  available memory is an equivalent of 6.1 Gbytes  on all 512

nodes.

‘1’he  code is implemented using the General Concurrent I’IC (GCI’lC)  algorithm developed

by l,icwcr and lhxyk[3].  ‘1’hc  GCI’lC  algorithm is designed to make the most computational]y

intensive  l)ortion of a PIC code, the partic.lc  computatio]l,  run cfflcicnt]y  on MIMI)  parallel com-

puters.  nigh efficiency is ac}~icwcd by minimizing illtcrproccssor  communication and balancing

processor computational loads. IT] general,  the GC1’IC algorithm uses two spatial decompositions

of t}lc physical domain to divide the computation efficiently among parallel processors: a pri-

mary  ciccomposition  to optimize the parallel particle push computations (i.e., particle move and

current del)osit)  and a scco?idary  decomposition to optimize the parallel field computations (i.e.,

field update). In the primary deccmlposition, each processor is assigned a subdomain  and all the

partic.]cs  and grid points in it. When a particle moves from one subdomain  to another, it must be

passed to the appropriate processors, which requires interprocessor  communication. IIowever, the

primary decomposition is chosen so that both illtm~lolations between t,he particles and the grids

(gather/scatter) can be done IocaJly, e.g., with no intcrproccssor  communication. ‘J’o ensure that

the gather/scatter can be performed locally, each processor stores guard cells, e.g., neighboring

grid points surrounding a processor’s subdornain  which belong to another processor’s subdomain

(1’ig. 2). lnterprocessor  communication is necessary to exchange guard cell information. lhq)end  -

ing on t}lc method chosen for field update, the secondary decomposition can be either the same

as or different from the primary clecomposition. If the decompositions are distinct, additional in-

tcrproc.essor  communication is necessary to move the grid data between the push and field stages

at each time step [3, 15].

l’or our 31) EM I’IC code with finite-difference field solve to have load balance, the primary

decomposition subdomains  should have roughly the same number  of particles and the secondary
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decomposition subclomains should have the same nulnbcr  of grid points.  WhcII the grid is regular

and the paltic.le distribution is uniforln,  equal Volllmc subdomains  arc optim~lm for both  the Push

and field stages, ‘1’bus, for this c.asc, the primary and scc.ondary  decompositions are identical.

l’ig. 2 illustrates a 2-dilncnsional subclomaill.  l’;ach  processors’ subdomain  is bounded  ill each

di]ncmsion  by

~lej~ < ~ < ~right (lo)

‘J’he grid points  within this subdomain  arc t}mn

(11)

ill cac.h d i m e n s i o n ,  where il.jt = lN7’(xl,jt)  -t 1 and i,~g~t c ~~’~’(~~ig}~t)  (kjt  ~ ~~~’(*iejt)/

iright c ]~~’(~right)  —  ] i f  ~~C~t/~T~~)Lt lies  Cxactly  0 1 1  th(! gl’id  }) OilIt). Nok that il~jt and iright

dcwotc the grid points on the global  grid. III tile code, tlIc gricl  array indicies within  a processor

arc Lasccl  on the ‘local” indexing. As illustrated in l’ig.  3, in addition to the grid points from

il,jt to iT~gh~,  each processor a]so stores guard cdls. If the number  of guard cells on the left-side

and right-sido  in each dimension arc ngl and ngr respectively, then the total grid points stored

in each processor are from ilejt – ngl to iright  + ~lgr in each dinlcnsion.  Thc num~cr of the guard

cells  needed is determined by the particle weighting scheme as WCII as the algorithm to update

the field. In this code, wc use linear  interpolation for pa.rtic.lc weighting.

in our code, the computation dolnain can be partitioned into 1-, 2-, or 3-clilnensional  sub-

domains (“slabs”, “rods”, or “cubes” ) [9]. Fig. 3 shows the particles in typical 1-, 2-, and

3- di ]ncn sion al domain clec.olll~~ositiol~s. The  particlm  are colored according to processor. For

a given problcm,  the optimid  domain partition is chosen by considering many factors such as

the problcm size, the homogeneity of the problem, the nulnbcr  of processors that will be used,

mac.rose.epic drifts, etc. Sine.c “productive” calcu]atiolis  arc performed within a subdomain  while

il}terprocessor  communications are through subdonla.in  surface, communication cost correlates

~,it]l t}le ra,tio of subdolna,in  surfac~ area to sul)do]naill  i~olu][lc  S/V. l’or the pcrforma.ncc ana l -

ysis runs in this paper, we shall usc tile cutjic  subdolnaill  because it has the minimu]n  surface to

volume ratio S / V .

}’igure  4 shows the flow chart of our parallel  31) electromagnetic }’IC code. ‘i’he main loop uses

six major subroutines. Purtick Move, L’urrcnt  ]kposit,  and l’icM ZJpdak for 1~ and l; (represcntwl

by the rounded blocks in k’ig. 2) have been discussed in the last section. ~’hcy are the essential
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c.olnputation blocks  in a scqucntia]  Ilhl I’IC code. 011 a paralle] computer-, each processor executes

these olwrations  inclepcmclently  using its own data arrays, ‘1’he  computations arc lillkcd together

through lncssagc-passing  and global Colrlrllllrlicatiolls. I’he code has three major message-passing

subrou t ines :  l’artklc  7}acle,  Guard Cell Suntntaiion,  and Guard Cell )hchangc (rcprescntecl  by

tl)c five rectangular blocks), ‘J’lIc  global  Loulldary  conditions arc also iIIIIJoscxl  in these three

subroutine to avoid additional loops over grid points and particles. Currently  our code uses

l)cu-iodic boundary conditions. IIcnc.c,  we have the processors logically collnected  periodically

in the initial subdomain  setup  (e.g. the processors at right-]nost  domain is connected to the

processors at left-most domain). q’herefore, ~)eriodic  global  boundary conditions are automatically

ilnposccl t]lrough col)]l]lllllicatiolls  between the left-most and right-most processors. I’igure 4 also

shows tile two main stages for our paralle] 1’IC code. ‘1’he  particle  push col]sists  of }’article Move,

l’ctrlick  7iwck,  Ckrrcnt  ]Ic:posit, and Guatd  Cell S u m m a t i o n . ‘1’lIc jiezcl solve consists of J’icld

lJpdak  and Guard Cell Exchange for ~ and l; fields.

Guard Cell lhchangc is used to update the fi and l; fields at processor boundary cells and to

in~l~ose  the global  periodic boundary conditions. The field grid and field guard cells are illustrated

in l’i.g. 2. It is obvious from the finite difference scheme (wI(6) and eq(7))  that the grid points

at i~r~l and irl~h~ need the information at the g;rid points i~e~t - 1 and ir~~h~ + ] respectively in

order to be updatecl.  IIcmce,  the field update needs one guard cell surface on both the left and

right side. ‘1’hc  linear  particle weighting scheme also requires one guard cell surface for interpo-

lating  the field to the particle position. ‘1’hcrefore, wc take ngi = ng, = 1. In order to fill the

guarcl  CCIIS with the  UPdated ~ and ~~, th~ J? and J; at  iie~t  slid irig~t  grid points  n e e d  t o  be

exchanged between the neighboring processors. ‘l’he exchange of guard cells is done t}lrough a

loop over the three dimcnions  x, y, and z with inforlna.tion  exchanged separately in each of the

thrco  dimensions, Within the loop, the guard cells  arc exchanged in one dimension only. By

performing the communication in each dimension sc])arately,  only two communication buffers and

six communication calls are needed. (If all three  dilnensions  were considered simultaneously, 26

c.oll~l~l~lnica.tiol~  buffers and calls would be nceded[9].  ) ‘] ’he corner guard cells are also filled au-

tomatically after the three loops, ~lie  psuedo  code for guard CC1l exchange subroutine is as follows:

]{’or iul, 3 dimensions do



pack the fields at i~e~~ and ir;~~t surfaces into left-ancl right-going buffcn-s

send left- and right-going buffer to left- and rigllt-neighbors

rcc.civc flmn right- and left-neighbors

unl)a,c.k  and fill tllc i~i~~t + 1 and i~~~t + 1 surfaces

cl] d do

Guard Ceil Su7nmation  adcls the  currents deposited in guard cells  to the proper cells  in the

neighboring processors and also imposcx  global  boundary conditions. l’he  current grids and guard

CC1l S arc illustrated in l“igurc  2. When depositing current, those particles near a. suhdomain  bound-

ary will contribute currents to grid points wit}lin the processor’s subdomain  as well as the grid

points which arc owned by ncigliboring  processors. Since the current is defined at the n +- 1/2

time lCVC1, the calculation of J“+ 1/2dt needs particle  positions  at both the IL + 1 and n time step

(P+ ] and i“). ‘J’o save storage as well particle col[llrlllllicatioll,  F“ is obtainecl by moving 7’+ 1

backward in tilt~e in curwnt  dcjwsit, whic}l occurs after  particle trade. IIence,  for those particles

which wcwc traded at t}le  n + 1 time step, their F’s lie outside the subdomain  of their  current

IJroc.c:ssor. ‘1’hcnwfore,  instead of olle guard  cell surface as required  by the linear weighting scheme,

one needs two guard cell surfaces on both side of the subdomain  for current deposit, ngl = 2

and ngr = 2. (Note this is lm.sed  on the usual constraint on time step in explicit 1’JC codes:

vdt < cell  length). F’or the special case that Xlejt  lies exactly at the ilejf grid point, considering

vdt < cell length, only one guard cell  surface cm the left side would be sufllcient (ngl = 1 and

ILgT == 2), ‘J’hc guard cell  currents need to be passed to the neighboring processors and added to

the currents at the appropriate gricl points of the neighboring processors. As in the Guard Cell

lhxhngc described above, this guard cell c.om]nunication  is clone separately for each din~cnsion

under a loop over dimensions x, y, and z. Guard cell contributions to the interior corner  cells

are automatically propcr]y  summed for after  the three 100})s. q’he psuedo guard cell summation

su brou tin e is as follows:

l’or i=l, 3  d i m e n s i o n s  d o

pack currents in il,jf – ~~gl to ilejt --1 and iri~}t~  4 1 to iri~ht  + Ttg, surfaces

into left- and right-going buffers respectively
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send lcft(right)-going  bufler  tcj left(right)  neighbors

mccivc buffers froln lcft(right)  nciglllmrs and store in rcccivc-lcft(right)  buffers

add the receive-right to currmits  at i~i~~~  – ?lgr to i~l~~~ – 1 surfaces

add tllc receive-left to currents at i~C~~ + 1 to ilc~~ + ngi surfaces

en(l(]o

Note that for situations where the domain is not partitioned in a certain dimension, e.g., if

ollc-(lilllellsiollal  “slab” or tw~climcmsional “rod” clccompositions }Lad been used instead of threc-

dimcnsiona,l  ‘tcubcs”, then it is not ncccssary  to do any intcrprocessor  communication in this

dimension. in this case, the code still loops over this dimension in the guard ccl] communications

in Guard  Cell l;xchangc  and Guard Cell Su.mmalion  routines in order to impose  global periodic

boundary conditions for the field and the currcllt. 11 owever, no interproccssor  communication

occurs[9].

Partick ~kadc  is used to trade particles bctwcwn  processors and impose global boundary con-

ditions. After the l’article  Move, each particles’ new position is checked against the subdomains

boundaries [cq. (10)]. If a particle is found out of bounds  on the left (right), it is placed in a

left (right )-going buffcr[3].  When all particles in a processor have been checked, the buffers are

l)asscxl  to the neighboring processors, and at the same time,  inco]ning particle buffers are received

floll]  the neighboring processors. ‘l’lie  incoming particle buffer is then unpacked to fill in holes in

tllc local l)articlc  array. ~’hc partic]c  trade subroutine is a modification of the one described by

l,ystcr  ct al[9]. For a detailed discussion of the lnethod  used to pack/unpack particle buffers, sce

l,icwcr and l)ccyk[3]. ‘1’hc  psucclo code for the  particle trade subroutine is as follows:

l’or i:=. 1, 3-din~ensions  do

for all particles do

apply the periodic global

if particle position

if particle position

boundary c.onditio]l

< Zlcjf,  pack into left-going bufkr

z X,ight, pack iIltc)  right-going buffer

1 send left(right)-going  buffer to lcft(right)  neighbor

rcccivc buffers from lcft(rigllt)  neighbors ancl store ill receive-left(right) buffers
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check particle positic)ns  in rcccivc buflcrs:

if a particle is at < xlr~t,

remove  from receive-right and pack into left-goillg buffer

if a, partic]c  is at > zri~ht,

rcnnovc from rcccivc-left and pack into right-going buffer

ifthcrc are particles ncml to be passed further, go to 1

unpack rcc.eive-right/rccei  vc-left  bufler into the local particle array

clld do particles

e]icl do dilncnsions

Note that, as in the guard  c.Q1l  routines, if t}le clomain  is not partitioned in a certain di-

mension, after  performing global  boundary conditio~lsj Particle  !i’’wfc exits that dimcmsion loop

without pm-forming any interprocmsor  communication. q’hc IIunlhcr of the particles in the receive-

left(right)  hufl’er  is also checked before the buf[er is unpacked to ensure  that it would not overflow

the local particle array. Finally,  the step that checks particle positions in the receive-left(right)

bufler is IIecessary  for situations that particles lnay ]nove more than one subdolnaill  in a tilne

step. For explicit PIC codes with static domain decomposition suc}i  as our code, particles will

never travel more than one subdomain  per time step due to numerical stability constraints on the

time step (volt < cell length). }Iowever, particles may travel more than one subdomain  per time

stel) in 1’IC codes with dynamic load balance where the domain lnay he repartitioned every tilne

step [] 5] or in implicit PIC  codes where large dt may be used.

3 Performance Analysis

‘1’o analyze the performance of our parallel 311 EM }’IC code, a simple test case was used: a

relativistic. counter streaming electron beam instability. ]n this test case, two equal electron beams

are set to counter stream in the x direction with drifting  velocities Vd = 3- O.4C, ‘l’he electrons

within each beam follow a Maxwellian distribution with t}lcmna] velocity Vt = 0,05c. The ions

are considered as a fixed background. This counter streaming system generates the well-known

two-stream instability. While the classical two-stream instability is an electrostatic instability, we
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find the instability gcmeratcd  hcm is clcctrwmag]letic in nature. Since the drifting speed is close to

the speed of light, the unstable wave gencr-atcxl  }Ias colnparable  electric and magnetic fields. Fig.

5 shows a typical silnulation  result ill the (z, z, VT) phase space. ‘J’hjs  test run used 8 x 1 x 2 = 16

l)rocess~rs. The top pane] shows the dmna~n decompcmition  and the initial particle clistribut,ion

with electrons colored by processor. ‘1’hc  sec.cmd and third panels show the electron distribution,

colored by beam population, at t = O ancl f =. 47wljC1 respectively. The inter-mixing of the two

beam populations causecl  by the instability is apparent in the third panel.

‘1’o evaluate the code performance, we have measured the total  code time per time step loop l~Ot

as well as tllc times spent by eacl(  of the six major  subroutines for a series of runs. l,ct  us demote

,-,f currewt,  ~’jldupdatey
r!

7I1OVC-  * 1 ~’trmde,  qjc,nl,  ~&.jI  as the tilne spent  by Wrtick move, current deposit,

jicld  upduk, purlicle trade, guard cell current sumrimtion,  and jielcl guard cell cxchangc respectively.

Since each processor runs the code with slightly diflcrwnt  tilncs,  the tin~cs  wc measured are the

maximum processor times on a parallel computer. Since the clock calls introduce synchronization,

~;.t was measured with all the subroutine clocks turned off. There will bc a small difference

between the measured 2\Ot and the value of 7~,0UC + ~krr.nt  ~“ ~~ldupdate  ~- ~~rade  + ~~.sm  ~- ~~cjl.

lYoln the measured subroutine times,  wc defiIIc the ])article push time  (which includes  the

i,ilncs o]l nioving particles, dcl)ositing  currents, applying boundary conditions, and related inter-

proccssor  comInunications  as shown in Fig. 4):

and the field solve time (which includes the times on updating the F, and 11 fields, a])~)lying

boundary conditions, and related intcrprocessor  communications as shown in Fig, 4):

Wc also define the guard cell/boundary conditic)n time as

(13)

(14)

a.rld the total  colnmunication  /boundary condition tilllc as

If only one processor is used, 7’Cbc (1) is simply the time s~mnt on the global boundary conditions,

Whcvi multiple processors arc used, 2’c~c (NP > I ) is the sum of the time spent by the code on



r ‘~c tol~ct}lc  co]lllllu?licat  ion timecoll~llllll~icatiol~s  and global boundary conditio][s.  I,ct us del[otc f

sljcllt  for the pUIpOSC of global boundary co]lditiolls,  S tllc area of the global dolnain surface, ant]

,$’ S?IIIL the suIn of the areas of all subdomain  sulfate. ‘1’lle fraction of the global  boundary condition

tilllc witllill  l’r~c scales as

Wllcn the number of processors used is lnuc.]i larger  t]len olIc, f’C~C “IS dolninated  by the ‘(pure”

intcrprocmsor  c.omlnunication a]lcl ILcncc, it is a good lneasurc  of the parallc] communication cost.

‘1’lle l)crformance  of our parallel 31) clcctlolllagllctic.  I’IC code is lncasurcd  in tllrce ways: 1 )

scald ])roblcm  size analysis; 2) fixed l)roblcm  size analysis; and 3) comparison of the performance

011 the lntci lhdta  with that on ‘single processor Cray supercomputms.

An in~~)ortallt,  measure of the performance on a c.c)ncurrcmt  computer is the parallel cfllcicncy

c wliich  mca.surcs  the effects  of conlmullicatioll overhead and load imbalance[l  6]. If there were no

c.oll~ll~~ll~icatiolls  involved and the processor loads wore perfectly balanced, the parallel efficiency

would bc c = 100%. ]n this paper wc shall focus only on the eflcc.t  due to col~~l~luIlic.a.tiol~  overhead.

‘1’hc  simulation runs used in this scc.tion all have near-perfect load balance because the partic.lc

dist,ributio]ls ill these runs arc nearly uniform. (l)ynamic  load balance for

distributions has been illvcstigatcd  in a 211 }’l C code by l’erraro  et al[15].  )

3.1 Scald Problem Size Analysis

non-uniform particle

WC first study the parallel Wiciency for very large simulations using a sca~cd  problem size analysis.

in a sc.ajed  problem size analysis, wc keep tile IJroblcnl  size on each individual processor fixed

while inc.rcasing  the total number  of processors, ‘1’hc total prohlcm size is then  proportional to

the IIumbcr of processors used. q’he parallel cfl-iciency  in a

as
lio~(l)

((N) = ;,-
ftot(A’)ti”

scaled prot)lcln  size anajysis is defined

(17)

where 2~Ot(N) is the total loop time elapsed 011 a parallc] computer using N nodes.

We consider two cases for scaled problem analysis. in both cases, cubic subclomains arc used

and the problems arc scaled up evenly  in the three dinlellsions. III the first case, S1, each node

has 32 x 32 x 32 CC1lS and 2.22 x 105 particles (W 7 particles/cell). When S1 is loaded on all 512

nodes, the size of the total problem becomes 256 x 256 x 256 (16.8 millioll)  cells  and 114 million
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partic.lcs.  III the second  case, S2, each IIOdtI has 16 x 16 x 16 cells  and 3.16 x 10s particles (W 77

l)articlcw/cell).  ‘J’hc size of S2 on all 512 llodcs is thcll  128 X 128 X 128 (2.1 millicnl)  CCIIS a?ld

162 Ini]lioli  partic]cs.  We note that t]lc ]tlcJno]y  sim required to ru]i S1 and S20n each node are

10.4 Mhytcs  and 11.6 Mbytes respcctivc]y. Considcrin.g  tile Iilcmory  available for calculation is

12 Mbytes  per node on the l)elta, S2 represents about  the largest problem that one can fit onto

t}Ic l)clta  system. W}]cn S2 is loaded to all 512 Ilodcs of the l)clta, the total memory  size is an

cquivalcvlt  of 5.9 Gbytes.

‘1’hc parallel efficiencies for S1 and S2 arc s})owll  in l~ig. 6 (left axis) as a function of the

Iiumbcr of proc.msors  iVl,, ‘l’he results show that a high parallel efficiency of c z 95$10  has lmcn

acllievcd  for both S1 and S2. As mcntiolicd be.forcl since we have perfect  load balance for the

test  runs, the cffic.icmcy  is degraded only by il~tcr~~roc.cssor  comlnunic.atiolls.  IIencc,  the ratio of

7’cLc/7~C,t  is also shown in 1+’ig. 6 (right axis, note scale change). Wile.11 only 1 node is used,

I’C*C(I])OCIC)  consists of only the global boundary condition time. q’lIc  total boundary condition

tilnc is ?“~c(l noclc) R 0.0257 \Ot(lnodc) for S1 alld 7’cbC(l 710dc) R 0.021 Y~Ot(lnodc)  for S2. When

the nulnbcr  of processors is A’P >1, the major part of 7’Cb’ “1s for “pure” parallel colnmunicationsc

(l’or the scaled problems here, from eq(l  6), wc have l’~C/7’CbC  K 1 /JV~J3.) We find that 7’Cbc takes

less tlIQn 5% of 7\Oi . Not surprisingly, whcIl the l)u~nbcr  of processors used is much larger  than

1, ((A’l, >> 1) & ] – T’b’/7;of.

in l’ig. 7, we plot the loop time 7\Ot,  particle push time 7’~Us}’ , field solve time 7’f’C’d, as well as

tllc coInmunication/boundary  conclitio]l  time for partic]c  ~)ush 7~vddC -I 7~C~~ and field solve Y~Cjl.

(1’ig. 7a shows the times for S.I and llg. 7b sliows  tile times for S2.) We find 7~0, is dominated

by the particle push stage of the coclc (7’~US” ), which stays almcmt constant as the number of

procmsors  is increased. in bot}l  cases, the field solve  o]tly rcprescnt,s  a very small  fraction of the

total  time: !l’fie~d 1’/ M < 3 %  f o r  s] and q’f~e~d q/ M < 0.66% for S2. As a test, in some other

silnula,tions  wc have used w 5 particles/cell, F,veII at such a low particle nunlber/grid  ccl] ratio,

we find the field  SOIVC still takes  ~ 4% of the total  tilnc. As exl)ected,  the local finite diffcuwlcc

field solve runs very fast in parallel I)IC codes.

One of t}lc most important measure of a 1’IC CC) CIC’S spcwd is the ~)a.rtic.le  push time  per partic]c

pe] tilne step i~ush or the total loop time pcr particle l)er time step itOt.  l’or S1 and S2, particle

})ush times and the total loop time o]] the 512 node l)clta  are as fcdlows:
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ipus~’ Y 128 (tfO~ N 131) nsecs/}~article/til~~c  step for S1(1 14 million particles, 2563 grid cells)

W’S’l R 115 (f~o~ ~ 116) ~lsecs/~~articlc/tillle  step for S2(162 million particles, 1283 grid cells).

‘J’O malyse the particle push stage of the code, ill l’i,g. 8 wc show times spent in the various

}Jortions  of particle pus}] for S2 on the log scale. Since each processor has approximatc]y  equal

nu]nhcr  of particles in the scaled size problcvns,  the times sl)cnt  by “productive” particle colnpu  -

tations, particle  moue and current deposit, arc independent of the number of processors used. k’or

practical applications, particle move and current deposit, are the most computational intensive

l)ortions of the code, l’or the S2(5121Lodc) case, 7jlLOv~ /TPu$h  H 2,22( ?:U,,Cn,/Y’~u’h) E 0.67, A s

for the communication times ~~,~~c and ~~~,,,,, ~~rad~ > 7~csT,, (~~,~d, ~ lo.47~,w,  at ~P = 512)

bccausc  particle trade has a loop over all tllc particles. IIuc to the large problem size on each

processor ,  ~’t,~d~ and ~~~~,,, arc ncgligib]e  wit]lill  7’1’”sh (At  NP == 512: 7\,0d./7;,,0V. H 0 .04 ,

7:c*,,,/Y;urr.n,  N 0.01, and (~~,~de 4 ?~CWL ) /~ ’ p u s h  E’ ().()3).  }It2ncc, a l t h o u g h  ~~,od. a n d  qgds,,,

increases somewhat as the node number incrcascs,  this increase of communication dots not affect

, ymsh1 .

‘J’o analyst the field solve stage of the code, in l’ig.  9 wc compare the field solve times for

S1 and S2. ‘J’hc time spent to update t}lc field lj~~~;,~at, is independent of NP bccausc  scaled

pIohlcms  have equal number of grid points pcr processor. IIowcvcr, unlike the particle push, wc

find the communication time 7~CjI is larger  than ljldUPda~e for both S1 and S2 when NP >1. (At

512 nodes, Ygcji/Y>ldt@at~  z 4.6 for S1 and ~~cjl/~]ldupdate H 1.8 for S2, ) ‘J’his  is because the

finite-diflcrcnce field update is very fast and the number of grid points within each processor is

not large enough. Since ~icld  Update operates cm gtid points within a subdomtin  whi]c Guard

Cell I;xchange operates on grid points over a subdolnain  surfac.c, the ratio of ~~CjJ/q~l&Pdm~e

correlates with S/V. l’hrough  other test runs, wc find that one usually needs S/V < 0.15 t o

a,c.]licw. !f~Cj~/q]~dUpdatc <  1. For the test runs used here, wc only have S/V = 0.1875 for S1

and S/V = 0.375 for S2. Nevertheless, since the code time is dominated by 2’l@sh  and ?’Jield  is

negligible in 7Lf,  ff~~ji  only has a minimum effect on the overall code performance.

‘1’hc  timing results in Figs. 8 and 9 show that the guard CC1l communication times (~~cs~,

al[d 7~Cj/)  increase as the number  of processors incrcascs. IIowcver, the guard cell number and

the size and number of communicated message is determined only by the S/V ratio and, thus,



indepmiclcnt of the number  of pmccssors  for scaled problmns. IIcllce, tlie observed illc.rcasc  o f
,)1 .qcs7n and 7;Cfl  is apparmltly  arcsult ofthc lklta communication network contcmtion.

3.2 l“ixecl  l’roblcm  Size  A n a l y s i s

in afixml  problem sizcallalysis,  w’ecolll})arc  tllctilllcsto  rUII the salneproblcm  011 all

IIulnhcr of processors. Since the tc)tal  problem size is fixed,  the problem size on cm.h

})roccssor decrcascs  as the number  of processors NP illcrcmscs.  11’or a problem that cau

nc.rcasing

[(cliviclual

)C fit into

a minimum of JV,TLITL  ~)roccssors, theparalle]  dliciellcy  for N z N ll,iT,  processors is cldincxl  by

(18)

W C collsidcr the following two fixed sim problems. ‘1’he size of the first problcm,  1“1, is

3’23 = 32768 grid CC1lS and 2.22x 105 particles (N 7 particle/c.ell). In the second problem, 1“2, we

usc tllc salnc number of grid cells but  increase tllc total nulnbcr  of particles to 2.52 X 106 (N 77

particle/cell). Note the size of II’] is the salnc as that of Sl(lllodc),  which can bc fit on on a single

~Jroc.cxsor  on ])clta.  ‘l’he size of 1~2 is the same as that of S2(8nodc),  w}lich requires a minimum of

iV,,L~,,  = 8 processors to run. l’] and 14’2 were run using processors from NF, = NnliTL to NP = 512.

31) domain partitiol)s  arc used to dcwoInposc  the total  dolnain into A’P subdomains  of equal size.

]n l~igure  lOa, wc plot the parallc] cfiicicncim  for 1+’1  and 11
12 (left axis) and the ratio of 71cbc/7\Ot

(right axis, note scale change) as a function of processor number  A’P. ‘1’lle loop time 7\01, partic]c

l)USII  time 7’J’Us~, al~d field solve time q’~ic~d arc shown in l’igure IOb. ‘J’he results show that

t}(e cfiicicmcy  decreases as the nulnlmr of processors increases. ~’his  is to be expected because,

for fixed size problems, the increase of lVP rccluces the computations on each processor while

illcrcascs interproccwsor colllrll~[rlicatior~s. As shown in l’igure 10, the increase of communication

overhead greatly affects the performance for small size problems such as 11’1. I+’or instance, when

we divicle  1’1 in a 311 partition using 8 x 8 x 8 = 51? processors, each processor will only have a

colnputation  domain of 43 grid points and about 430 particles. With such a small size problem

01] each node,  the communication time bec.olncs  larger than the c.omputatio]l  time,  which causes

a low parallel cfhcicmc.y  of ((512) w 27Y0. on the other  liand,  wc find that 11’2 performs much

better tha.u 1’1 on multip]c  nodes due to its larger ~)roblc~n  size. When 11’2 is divided into 512

})roccssors,  each processor still has on a.vcragc  N 4922 particles, which is sufficient for computation

time to dominate ~~.t and for the parallel cflicicllcy to reach c(512) H 76%. As expcctcd,  for 1’IC
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simulations, a parallel computer is best suited only for problems with a large enough size (i.e.

total llulnbcr of particles).

‘Jo examine in detail the communication costs for fixed size problems, in F’ig. 11 wc show

?~rOdC,  ?’gc, and y’c~c normalized by ~~~t as a fU1l CtiO1l of ~P (left aXi S). (~tccall t]lat  ~~,ade is the

comlnunication  and boundary condition time associated with particlm  and I’9C is the c.on~nluni-

ca.tion  and boundary condition ti]nc associated with field and current guard cells, ) I!’or fixed size

problelns,  increasing the processor number increases the subdomain  surface to voluJnc ratio S/V,

Since guard cell communication directly correlates with S/V and particle communication is also

somewhat related to S/V, in l’ig.  11 wc have also plotted S/V as a function of NP (right axis).

l’or II’] (1’’ig. 1 la) which has N 7 particles pm cell on average, the guard cell comlnunication  time

7’9C dominatm  the total  communication tilnc !l’C~c. On the other  hand, for F’2 (1’ig.  1 IL) which

haS ~ 77  })artic]~s  per cd],  We haVe ~~,od. z ?’~c. l)UC to the larger  number  of particles used in

14’2, 21cbc/l\Ot is much less sensitive to the number  of processors used and to the surface to volume

ratio S/V. ‘1’hcrcfore, to achicvc a high parallel cffic.iency for PIC cocks, the key parameter one

can adjust is to make sure there are culough particles per processor.

Another factor that aflects the particle communication time l~,~de is the number  of particles

traded between processors. in l’ig. ] 2, We ])]Ot ~~r&/~~Of as a function  of the  Pcrcelltage  of

particles traded pm time step. l~or this analysis, we usc l’2(64nodc)  and l“2(256node) as an

example. Comparing to l’1 and the scaled size proMcmls  (S1 and S2), the F2 cases are the

problems that need to trade more pa.rtic]cs  duc to their large S/V and large number  of particles

pm- cell,  ‘i’o get an even higher percentage of particles traded per time step, wc increase the time

step dt. in l“ig.  12, the number of particles traded in l“2(64node) is increased from 1.7% to 11.4%

and that in k’2(256nodc)  is increased from 3.2’%0 to 20.5% as dt is increased. While the percentage

of particles traded is increased about 7 times, we find 7~,adc/7\Ot  stay as almost constant, This is

because !i’j,ad, is mainly  spent on the loop over particles to check particle positions, which is not

affected by the number of particles traded. IIence,  the performance of the code will not degrade

for problems that require a large fraction of particles to bc traded. l)arge fraction of particles

may be traded in problems involving nonuniform particle distributions where small subdomains

must be used for load balance.,

16



3.3 Performance on Delta vs. Perforlilance  on Cray

1(’inal]y,  we compare the overall performance of t}:c  code on Delta with !,Ilat on single  processor

Cray supcrcomputers. 2’WO Cray computers were used for this analysis. ‘1’hc first one is the Cray

Y-Ml’ at JPI, which has a memory  limit of 16 h4words or 128 Mbytes. ~’he second onc is the

Cray C90 at NASA Ames (The  Von Ncuman).  ‘1’he  memory limit on the NASA Ames Cray C90

is 128 Mwords or 1.024 C~bytcs, q’hc memory limit 011 IIltel  Iklta is about 6 times larger  than

that of a sing]c CI’IJ Cray C90.

Other than  the message-passing and global communications, the Cray version of the code is

idmitical to the parallel  version. ‘l’he Cray version of the code is compiled using the Cray Fortran

ccnnl)i]ing  system’s automatic vcctorization  al}d optilnization. IIowever,  no re-writing  was done

to optilnizc  and vcctorize  the gather/sca.ttcr for tile Cray. IIcncc,  the code performance on Cray

is not tllc best performance one can get from a Cray. All the Cray runs were carried out on a

sing]c CI’lJ.

In k’igurc  13 we plot the totaJ run time ?\Of for the S’2 case as a function of the “problem size”.

‘J’}Ic  unit of the problem size is clefined as the problem size on 1 node of the l)clta computer. For

S2, the size unit is 3.16 x 105 particles and 163 grid cells.  Note that while the problem size on the

Cray processor varies, the problem size per processor on the IMta is constant because the number

of processors increases with problem size.  I)UC to the memory limits on the Cray supcrcomputcr,

not all S2 problems can be run on the Cray. F’or instance, the largest S2 problem we ran on the

Cray C90 is s~zc H 91.13 (723 grid cells and 2.9 x 107 particles),
,.

!IIO compare the performance, wc define  the l)elta spccdup  as

(LJt/~~zc)cragSpccdup  = -–; -----, ---------–-
(!i’,o,/st2c)~,.,,a

(19)

l’or small problems, the Cray supercomputcr  performs much better than the parallel computer.

Comparing to Cray C90, the spccdup  factor at size  =: 1 is Speedup  H 0,12 for S2. IIowever,  as

the ~)roblcn~ size increases, the time spent  on the Cray increases approximately linearly in the

log scale. Whi]c on the Delta, due to the high parallel cfflciency,  the total run time for S2 stays

allliost constant as both the problcln  size and processor number  arc increased. At size = 64, wc

find the spccdup  of the Delta over the Cray C90 is Spccdup  R 7.42 for S2. Extrapolating the run

times on Cray to size = 512, if one had a Cray C90 or a. Cray Y-MI’ large enough to run the

size = 512 problems, then the spcwdup of the l)clta over the Cray C90 would be Specdup  H 58.4
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and the spmdup  over the Cray Y-MI’ woul{i k Spccduy  & 116.6.  We have also performed the

same analysis for the S1 case, and obtained silni]ar results.

4 Stimmary and Conclusions

A MIMI I parallel 31) elm.troma,gnctic I’IC code has been dcvelopwl on the 512 node IIltel Touch-

stone l)clta system. in the code, the particles are pus}md using a standard relativistic leapfrog

schcmc and the clcctrornagnetic  field is updated locally using a rigorous charge-conservation

finite-difference method. ‘l’he code is implemented using the General Concurrent I’IC (GCPIC)

algorit}lm[3]  which uses a. domain decompositicm  to divide the computation among the proces-

sors. g’hrce major message-passjng operations, particle  tmde,  guard CC1l exchange, and guard cell

summation, are used to link the computations in different processors together. With  12 Mbytes

memory per node and a total of about 6 Gbytcs  on all 512 nodes available to users, the Intel

IIclta  system allows our code to run simulations using over 108 particles and 106 grid cells. ‘J’he

parallel efllcicnc.y  of this code was evaluated using both fixed problem analysis and scaled problem

analysis. It is shown that our 31) EM PIC code runs with a high para~lcl efficiency  of c 2 95%

for large size problems. q’lle particle push time we have achieved is 115 nsccs/particle/time step

for 162 million particles on 512 nodes. l’he overall performance of the code on the Delta, is also

compared with that on Cray supercomputcrs. Comparing with the runs on a Cray C90, we have

observed a factor of 58 spccdup  on the l)elta for our test runs.

Wc find, for parallel computers, a finite difference field solve is significantly more cfflcient than

fast Fourier transforms. Our result shows that the fi]litc difference field SOIVC  takes < 0.7% of

the total  CPU time for protkns  with about w 77 particles/cell and < 3% for problems wit}i w 7

part, icles/cell.  ‘J’he field solve time is ~ 4 % even for problems w 5 particles/cell. q’his implies

that the effect of load balance for the field solve is nc)t nearly as important as that for the partjcle

push, IIence,  when the code is applied to problems with nonuniform particle distributions, a high

l~arallcl  efficiency can still  be achieved as long as tl]e domain is decomposed according to particle

load balance.

As expected, the major factor  that can degrade the code’s performance is the number of

particles pm- processor. IIowever, we find the “bandwidth” on

fairly large for high efficiency simulations. For instance, when

number of particles/processor is

using 256 to 512 processors, cmr
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test  rulks have a parallc] cflicialc.y  c > 95% for ~ 2 X 105 lJarticlc:s/JJrocessor,  c w 86% for w 2 X 104

l)articlcs/~)rocessor,  al)d c N 76(XI Cvcll for slllall  l)roblcl~ls  wit,ll only w 5 X 103 J)articles/~)rc)ccssor.
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]1’igure Captions-.

l:jg. 1, The Yee lattice showjng the locatjon  of the field c.omponcnts on the staggered,

finite-diffcrenc.c  mesh, where grjd points are at the corners of the cell shown. The electric  field

and currcmt  components arc dcfinwl at the mid-points of cube edges, while the magnetic field

com])onents  are defincx]  at tllc c.alters of cube fac.cs.

l’ig. 2. l)olnain  decomposition of atw~clill~e:~sjorlal  PIC simulation for4 processors showing

l)rocessor subdomains  ancl guard cells  (s}ladcd).  Each processor is responsible for updating all

the partjclcs  and grid points in its’ sul)domain. Each processor also stores field information for

the guard  cells surrounding its subdornain  to minimize interprocessor  communication.

Fig. 3. IIomain  decompositions for 1-, 2- and 3-dimcmsionaJ  sub domains with particles colored

by processor.

(a) I-1) partition for 4 processors. (b) 2-IJ partition for 16 processors; and (c) 3-1) partition for

64 processors,

]Og. 4. Flow chart for the parallel 31) ehxtromagnctic  code showing the “particle push” and

“field solve” stages. The routines in the rounded boxes require no interprocessor  communje.ation,

while the routines in the five rectangular boxes involve interprc)ccssor communication, Global

bou]ldary  conditions arc also imposed in these  “guard cell” routines.

Fig. 5. l;lcctron  (x, z, WZ ) phase  space from the. test case used in the performance analysis, a

relativistic electron two stream instability.

‘i’op:  Electrons at t=O colored by processor showing the domain decomposition in the x-z, plane.

Middle: F,lcctrons at t=O colored by populations showing two counter streaming elcc.tron Lcams

(drifting velocity Vd = +0.4c),

IIottom:  FHcctrons at twP, = 47 colored by species showing the phase-space mixing of the beams

caused by the instability.

Fig. 6. Code performance for two scaled problmns where the problem size increases with the

nu]nber  of nodes, NP. Per node, Case S1 has 114 million particles and 2563 grid points and Case

S2 has 162 million particles and 1283 grid poi]lts. The parallel efficiency (left axis) is very high

> 9570 twen on 512 processors. The right axis SIIOWS l~bC/7~Ot (right axis) versus the number of

processors where l’~~c, defined in eq. (]5), measures the communication overhead.

Fig. 7. Comparison of run times of different code portions for scaled problems S1 (a) and S2(b).
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Shown arc the total  loop time, 7~O~;

tilnc (trade, current guard ccl], and

the particle l}ush time,  7’~USh;  the ~)articlc comlnunication

boundary conditions), ~~radc + ~~d,,)l; the field solve “time,

q’j:~~d. ~,,c] ~],c f,cld c,olllll]ullicatio]~  time (field guard CCllS)~ ~idjl.
7

l’ig. 8. Analysis of the parallc] push stage for S2. l’lotted  are times sj)cnt in the four

subroutines of the particle  push stage: particle  move 7LtOVC, particle  trade q~7Q&, current  deposit

~hrr~jit ! current  guard cell + bcmtldary  conditions ~~dsm,  and the total  particle push time 7’~USA.

‘1’hc particle move and cleposit dominate the computation.

l’ig. 9 Analysis of the field solve stage for scaled problems S1 and S2. q’imc spent in portio~ls

of the field solve: flcld update ?~l@da~e  and field guard cell  + boundary c.ondltlons,  l~cs~~i.
. .

l“or

both cases, the time spent in iitcrprocessor  coll~llluriicatioll  dominates, hut  the total  cost of the

field solve is so low that the tota~  code efficiency rcllla.ins  high.

l’ig. 10. Code performance for fixed-sized problems  II’] and F2 vs. the number  of processors

NP, ~’he problem size pcr node decreases as the nulnbcr  of processors increases; increasing the

illterprocessor  communication.

(a) Parallel efIicienc,y  (open symbols, left axis) and the communication time  7’c~c/7\Of  (right axis,

filled sy]nbo]s). (b) Total time 7~Ot,  time for push stage 7’~U’h,  and time for field  solve stage 7’~ie~d

versus NP. ‘1’he  push stage  dominates for both cases.

l’ig. 11, Analysis of the col~~l~~ul~ica.tiol~ /bc)urldary  condition times (left axis) 7’9C = 29.$,,, +

~~cjl, ~\,Ode,  and Tcbc = 7~C + ~~,ade for fixed size cases l’1 (a) and 14’2 (b) vs. the number of

processors NP. In (a), for F1 (N 7 particles/cell), the guard  cell  time  T9C exceeds the particle trade

time, whereas in (b) for F2 (W 77 particle.s pm cell), the times arc comparable. Also shown is the

subdomain  surface to volume ration S/V. IIoth s/V and the communication costs incrcasc  as

the size of the subdomain  shrinks with increasing NP.

Jig. 12. )tatio of time spent in particle trade routine. (~~,ad,) to total  loop time 7}Ot as a

function of the percentage of particles traded per processor per time step. q’he timings arc for

the F2 case, which trades the most particles comparing to the other cases. ‘1’hc ratio is < 107o

and is insensitive to the actual percentage traded because most time is spend in the loop which

checks all the particles to determine which need to be traded.

l’ig. 13. Comparison of tho Dc]ta  and single processor Cray YM}’ and Cray 90 performance

versus ~)roblcnl  size. For both Crays,  the run tj)ne increases with the problem size since only one
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~)roc.essor  was used. For the l)elta, the number  of llodcs was increased with the problem size so

the problcm size per processor remained constant (Case S2). l’hc sequential Cray  code was not

c~ptilnized  for vcctorization  other than complied using the Cray systems automatic vcctorization.
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